Force in static general relativity

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1980 J. Phys. A: Math. Gen. 133221
(http://iopscience.iop.org/0305-4470/13/10/019)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 04:37

Please note that terms and conditions apply.

Force in static general relativity

Edgar Pechlaner
Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada, V5A 1S6

Received 17 July 1979, in final form 3 April 1980

Abstract

The force acting on the matter inside an arbitrary closed surface S is considered for the case of a static space-time $g_{\alpha \beta}$ with a static matter tensor $T^{\alpha \beta}$ satisfying $T^{\alpha \beta}{ }_{; \beta}=0$. Since the matter is in equilibrium, the body force is balanced by the surface force. The component of this force in any chosen direction is defined as the surface integral of an invariant and is transformed into a volume integral. Shrinking S to a point then yields the density of the body force. This paper is mostly concerned with applying this result to special situations. For instance, it is found that in the presence of shear stress the body force can have a non-zero component perpendicular to the gradient of g_{44}.

1. Introduction

We restrict our attention in this paper to space-times $g_{\alpha \beta}$ which are static and possess a static matter tensor $T^{\alpha \beta}$. We use coordinates such that

$$
\begin{equation*}
g_{\alpha \beta, 4}=g_{l 4}=T_{, 4}^{\alpha \beta}=T^{i 4}=0, \tag{1}
\end{equation*}
$$

where commas indicate partial derivatives, the Greek indices range from 1 to 4 , the Latin indices range from 1 to $3, x_{4}=t$, and the signature of $g_{\alpha \beta}$ is +2 . We do not insist that the Einstein field equations are satsified and we therefore include the case of test bodies, i.e. bodies with $T^{\alpha \beta}$ so small that its influence on the metric is negligible.

The closely related concepts of inertial mass, active and passive gravitational mass (Will 1976, Rohrlich 1965) and force, together with their corresponding densities, are useful in both finding and interpreting a $g_{\alpha \beta}$ or a $T^{\alpha \beta}$. The present work is mostly concerned with force. In $\S 2$ we consider a portion of a body at rest. Since the surface force is then in balance with the body force, the former is used to obtain an expression for the density of the latter (equation (10)). Section 3 gives a comparison of our results with some results from the literature. The implications of (10) are examined in the remaining parts of the paper. In $\S 4$ we first calculate the component of the body force in a direction which is an eigenvector of $T^{\alpha \beta}$ ($\S 6$ and most of $\S 5$ are examples of this and $\S 7$ suggests that this case is consistent with special relativity). A second case shows that in the presence of shear stresses the body force can have a non-zero component orthogonal to $g_{44, a}$. This result suggested part (iv) of $\S 5$ and thus demonstrates the usefulness of the concept of body force in general relativity.

2. From the surface force to the body force density

Covariant differentiation in the static space V_{4} with metric $g_{\alpha \beta}$ is denoted by a semicolon; in the space V_{3} with the equation $x_{4}=$ constant and metric $g_{i k}$ it is denoted
by a vertical stroke. The determinants of the respective metric tensors are ${ }^{3} g$ and ${ }^{4} g$. The 27 Christoffel symbols $\Gamma_{b c}^{a}$ are the same for both spaces. In V_{4} it is assumed that there is a static matter tensor which satisfies the equations of motion

$$
\begin{equation*}
T_{; \beta}^{\alpha \beta}=0 . \tag{2}
\end{equation*}
$$

Since $T^{\alpha \beta}$ is static, the matter is in equilibrium. Therefore the body force F^{a} acting on the matter inside a region V of V_{3} is balanced by the surface force acting on the surface S of V. The surface force acting on an element $\mathrm{d} S$ of S is

$$
\begin{equation*}
T^{\alpha \beta} n_{b} \mathrm{~d} S \text {, } \tag{3}
\end{equation*}
$$

where the 3 -vector n_{b} is the outward unit normal to S. Let us choose a direction by picking a unit 3 -vector $u_{a}(O)$ defined at a point O in V. In order to sum the components of these surface forces in this chosen direction, we move u_{a} by parallel transport along the unique geodesic from O to the general point P on S. The component of the surface force at P in the direction u_{a} is then

$$
\begin{equation*}
T^{a b} n_{b} u_{a} \mathrm{~d} S \tag{4}
\end{equation*}
$$

Note that a vector undergoes parallel transport along a curve if its absolute derivative vanishes (Synge 1964, p 12). The scalar product is invariant under parallel transport, so if instead of u_{a} the vector $T^{a b} n_{b}$ were moved by parallel transport from P to O, the result would be the same. Integrating over S, we define the component of the force F^{a} in the direction $u_{a}(O)$ by

$$
\begin{equation*}
F^{a} u_{a}(O) \equiv \int_{S} T^{a b} n_{b} u_{a} \mathrm{~d} S . \tag{5}
\end{equation*}
$$

Gauss's theorem then yields

$$
\begin{equation*}
F^{a} u_{a}(O)=\int_{V}\left(T^{a b} u_{a}\right)_{\mid b} \mathrm{~d} V=\int_{V}\left(T_{\mid b}^{a b} u_{a}+T^{a b} u_{a \mid b}\right) \mathrm{d} V, \tag{6}
\end{equation*}
$$

where $\mathrm{d} V=\left({ }^{3} g\right)^{1 / 2} \mathrm{~d} x^{1} \mathrm{~d} x^{2} \mathrm{~d} x^{3}$. The term $u_{a \mid b}$ is exactly zero if the Riemann tensor of V_{3} is zero, as in $\S 5$. This term goes to zero as V shrinks to a point, as can be seen from Synge (1964, equation (71), p 59 and the 2 nd or 3 rd of equation (111), p 67). The component of the body force f^{a} in the arbitrary direction u_{a} is thus defined by

$$
\begin{equation*}
f^{a} u_{a} \equiv \lim _{V \rightarrow 0} \frac{1}{V} F^{a} u_{a}(O)=T^{a b}{ }_{\mid b} u_{a} \tag{7}
\end{equation*}
$$

where V is the volume of the region V.
We have therefore, because of the arbitrariness of u_{a}, that

$$
\begin{equation*}
f^{a}=T^{a b}{ }_{\mid b} . \tag{8}
\end{equation*}
$$

Since $\Gamma_{4 b}^{a}=T^{a 4}=0$, we have

$$
\begin{equation*}
T^{a b}{ }_{\mid b}=T_{; \beta}^{a \beta}-T_{; 4}^{a 4}=-T^{a 4}{ }_{; 4}=-\Gamma_{44}^{a} T^{44}-\Gamma_{4 b}^{4} T^{a b}, \tag{9}
\end{equation*}
$$

and (7) and (8) become

$$
\begin{align*}
& f^{a} u_{a}=\frac{1}{2}\left(g^{a b} g_{44, b} T^{44}-g^{44} g_{44, b} T^{a b}\right) u_{a}, \tag{10a}\\
& f^{a}=\frac{1}{2} g^{44} g_{44, b}\left(g^{a b} T_{4}^{4}-T^{a b}\right) \tag{10b}
\end{align*}
$$

Some justification for using parallel transport in (4) is given by the following theorem. If in a static space-time with $g_{\alpha \beta, 4}=g_{a 4}=0$, a matter tensor $T^{\alpha \beta}$ satisfying (2) has only T^{11} non-zero, then the x_{1} lines are geodesics in V_{4} and V_{3}. In $\S 5$, where the background metric has a flat V_{3}, parallel transport needs no justification since there its use coincides with standard procedures. Oliver (1977), in defining a matter tensor for extended bodies, uses parallel transport of tensors along geodesics. Use of parallel transport of a vector as in (6) resembles that of Temple (1936).

3. Comparison with the literature

Whittaker (1935) and Ruse (1935) take the gravitational force to be proportional to the acceleration:

$$
\begin{equation*}
h^{\alpha} \equiv \frac{\delta}{\delta s} \frac{\mathrm{~d} x^{\alpha}}{\mathrm{d} s}=\frac{\mathrm{d}^{2} x^{\alpha}}{\mathrm{d} s^{2}}+\Gamma_{\beta \gamma}^{\alpha} \frac{\mathrm{d} x^{\beta}}{\mathrm{d} s} \frac{\mathrm{~d} x^{\gamma}}{\mathrm{d} s}, \tag{11}
\end{equation*}
$$

where s is the proper time. They take $\mathrm{d} x^{i} / \mathrm{d} s=0$, thus assuming (see § 7) that matter at rest is composed of particles at rest, and find that

$$
\begin{equation*}
h^{4}=0, \quad h^{a}=\frac{1}{2} g^{44} g_{44, b} g^{a b} \tag{12}
\end{equation*}
$$

Eddington (1924) writes (2) in the form

$$
\begin{equation*}
k_{\alpha} \equiv\left(\left.\left.T_{\alpha}^{\beta}\right|^{4} g\right|^{1 / 2}\right)_{, \beta}=\left.\left.\frac{1}{2} g_{\beta \delta, \alpha}\right|^{4} g\right|^{1 / 2} T^{\beta \delta} \tag{13}
\end{equation*}
$$

and takes this 'as the (negative) body-force acting on unit-volume'.
Synge (1964, p 249) discusses, without endorsement,

$$
\int\left(\left.\left.T^{\alpha \beta}\right|^{4} g\right|^{1 / 2}\right)_{, \beta} \mathrm{d} x^{1} \mathrm{~d} x^{2} \mathrm{~d} x^{3}
$$

as the total force acting on a body, which with (2) leads to the body force density

$$
\begin{equation*}
l^{\alpha} \equiv\left(\left.\left.T^{\alpha \beta}\right|^{4} g\right|^{1 / 2}\right)_{, \beta}=-\left.\left.\Gamma_{\beta \delta}^{\alpha}\right|^{4} g\right|^{1 / 2} T^{\beta \delta} . \tag{14}
\end{equation*}
$$

To compare the expressions (10), (13), (14) for the case of a static metric and static matter we assume (1) and $k^{\alpha}=g^{\alpha \beta} k_{\beta}$ and we find for the body force densities

$$
\begin{align*}
& f^{4}=k^{4}=l^{4}=0, \\
& \left.\left.\right|^{3} g\right|^{1 / 2} f^{a}=\left|\left.\right|^{3} g\right|^{1 / 2}\left(-\Gamma_{44}^{a} T^{44}-\Gamma_{4 b}^{4} T^{a b}\right), \tag{15}\\
& k^{a}=\left|{ }^{4} g\right|^{1 / 2}\left(-\Gamma_{44}^{a} T^{44}+\frac{1}{2} g_{b c, d} g^{a d} T^{b c}\right), \tag{16}\\
& l^{a}=\left|\left.\right|^{4} g\right|^{1 / 2}\left(-\Gamma_{44}^{a} T^{44}-\Gamma_{b c}^{a} T^{b c}\right) . \tag{17}
\end{align*}
$$

Using a divergence as body force density in (13) and (14) enables one to use Green's theorem to establish many parallels between general relativity and Newtonian mechanics, but at the cost of losing tensorial invariance. Thus Synge, while pointing out these parallels, does not claim physical significance for them.

The approach of § 2 evolved from doing simple examples as in $\S \S 5$ and 6 where it was obvious what the surface force and body force ought to be. It is therefore not surprising that f^{a}, but not k^{a} or l^{a}, leads in $\S 5$ to the expected answers. From the tensor character of $T^{\alpha \beta}$ and (8) it follows that f^{a} is a vector under transformation of the space-like variables.

For later comparison we conclude this section by quoting some results on gravitational mass since, in the static case, gravitational mass is measured indirectly by measuring gravitational force (= body force). Making no distinction between active and passive gravitational mass, Synge (1937), Pirani (1956) and Møller (1962) conclude that the density of gravitational mass is dependent on $T^{\alpha \beta}$ via

$$
\begin{equation*}
-T_{4}^{4}+T_{a}^{a}=-2 T_{4}^{4}+T_{\beta}^{\beta} \tag{18}
\end{equation*}
$$

Indeed, in Einstein's linearised theory expression (18) is proportional to the D'Alembertian of g_{44} and thus plays the role of active gravitational mass. Tolmann (1934), Møller (1962), Whittaker (1935), Ruse (1935) and many others find that the total gravitational mass of an isolated body is

$$
\begin{equation*}
\int_{\mathrm{Body}}\left(-T_{4}^{4}+T_{a}^{a}\right)\left(-g_{44}\right)^{1 / 2} \mathrm{~d} V \tag{19}
\end{equation*}
$$

Some proofs use pseudo-tensors, and all of them use Einstein's equations; Whittaker (1935) and Synge (1937) start from the density of some gravitational force. For a spherically symmetric body, (19) is indeed equal to the constant m appearing in the exterior Schwarzschild metric. In (19), the contribution of the stresses, i.e. T_{a}^{a}, is usually small even when T_{a}^{a} is of the same order as T_{4}^{4} (as is the case for electromagnetic fields for which $T_{\beta}^{\beta}=0$), because (Misner and Putnam 1959), for a bounded isolated body in almost flat space, the integral over T_{a}^{a} is almost exactly zero. For example, electromagnetic radiation in a box produces tension in the walls of the box which almost cancels the contributions of the Maxwell stresses to (19).

4. Two cases

To gain insight into (10) we study two special cases.

4.1. Case A

Denote the eigenvalues and eigenvectors of $T^{a b}$ by $\theta_{(c)}$ and $\lambda_{(c)}^{b}$ respectively. If u_{b}, the direction in which we find the component of the force f^{a}, coincides with one eigenvector, say $\lambda_{(1)}^{b}$, then with

$$
\begin{equation*}
T^{a b} u_{a}=\theta_{(1)} u^{b} \tag{20}
\end{equation*}
$$

we find from (10a)

$$
\begin{equation*}
f^{a} u_{a}=\frac{1}{2} u^{b} g_{44, b} g^{44}\left(T_{4}^{4}-\theta_{(1)}\right) \tag{21}
\end{equation*}
$$

If furthermore u_{b} is a positive multiple of $g_{44, b}$, then

$$
\begin{equation*}
f^{a} u_{a}=\frac{1}{2}\left\|g_{44, b}\right\| g^{44}\left(T_{4}^{4}-\theta_{(1)}\right), \tag{22}
\end{equation*}
$$

as demonstrated by examples in the next two sections. Gravitational force measures passive gravitational mass which, for the special situation considered here, is equal to

$$
\begin{equation*}
-T_{4}^{4}+\theta_{(1)} \tag{23}
\end{equation*}
$$

We recall that Synge (1937), Pirani (1956) and Møller (1962) obtained (18)

$$
\begin{equation*}
-T_{4}^{4}+\theta_{(1)}+\theta_{(2)}+\theta_{(3)} \tag{24}
\end{equation*}
$$

for the density of the (active) gravitational mass.

4.2. Case B

We now investigate the component of f^{a} perpendicular to $g_{44, a}$ and thus assume

$$
\begin{equation*}
u^{a} g_{44, a} \equiv g^{a b} g_{44, b} u_{a}=0 \tag{25}
\end{equation*}
$$

Then only the second term in (10a) remains and we have

$$
\begin{equation*}
f^{a} u_{a}=-\frac{1}{2} g^{44} g_{44, b} T_{a}^{b} u^{a} . \tag{26}
\end{equation*}
$$

This can be non-zero, i.e. the component of the force f^{a} orthogonal to $g_{44, a}$ need not vanish. If we choose the coordinates x_{a} such that $g_{44, a}$ is tangent to the x_{1} lines, then

$$
\begin{equation*}
u^{1}=g_{44,2}=g_{44,3}=0 \tag{27}
\end{equation*}
$$

and thus

$$
\begin{equation*}
f^{a} u_{a}=-\frac{1}{2} g^{44} g_{44,1}\left(T_{2}^{1} u^{2}+T_{3}^{1} u^{3}\right) \tag{28}
\end{equation*}
$$

Part (iv) of $\$ 5$ gives an example of this force orthogonal to $g_{44, a}$.

5. Simplest example

We apply here the results of $\S \S 2,3,4$ to the simplest non-trivial $g_{\alpha \beta}$. Suppose the metric is given by ($x_{1} x_{2} x_{3} x_{4} \equiv x y z t$)

$$
\begin{equation*}
\mathrm{d} s^{2}=\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}-W^{2}(x) \mathrm{d} t^{2} \tag{29}
\end{equation*}
$$

which is vacuum if $-g_{44} \equiv W^{2}=x^{2}$. The 3 -space is flat, and thus, for the vector u_{a} undergoing parallel transport, we have

$$
\begin{equation*}
u_{a \mid b}=0 \text { everywhere } \tag{30}
\end{equation*}
$$

The non-zero Γ 's are

$$
\begin{equation*}
\Gamma_{41}^{4}=W_{, 1} / W, \quad \Gamma_{44}^{1}=W W_{, 1} \tag{31}
\end{equation*}
$$

and material particles, initially at rest, fall along x lines. We assume for simplicity that the non-zero $T^{\alpha \beta}$, s are at most

$$
\begin{equation*}
T^{11}, T^{12}, T^{22}, T^{44} \tag{32}
\end{equation*}
$$

and are functions of x and y only. The non-trivial equations (2) then become

$$
\begin{align*}
& \left(W T^{11}\right)_{, 1}+\left(W T^{12}\right)_{, 2}+W_{, 1} T_{4}^{4}=0 \tag{33a}\\
& \left(W T^{21}\right)_{, 1}+\left(W T^{22}\right)_{, 2}=0 \tag{33b}
\end{align*}
$$

If in addition

$$
\begin{equation*}
T^{12}=T^{22}=0 \tag{34}
\end{equation*}
$$

is assumed, then any cylinder with equation

$$
\begin{equation*}
H(y, z)=0 \tag{35}
\end{equation*}
$$

can be considered as a free surface of a body, because for this surface

$$
\begin{equation*}
T^{a b} n_{b}=0 \tag{36}
\end{equation*}
$$

(i) If we assume

$$
\begin{equation*}
T^{12}=T^{22}=T_{1}^{1}-T_{4}^{4}=0 \tag{37a}
\end{equation*}
$$

then from (33a) we obtain

$$
\begin{equation*}
T_{1}^{1}=T_{4}^{4}=\text { arbitrary function of } y \tag{37b}
\end{equation*}
$$

The force $\int T^{11} n_{1} u_{1} \mathrm{~d} S$ on the part of the surface $x=a$ inside the cylinder $H(y, z)=0$ is therefore the same as that for the surface $x=b$ (if $u_{a}=n_{a}=(1,0,0)$). In calculating the sum of all surface forces acting on the body between these two planes, we have the two n_{a} anti-parallel (n_{a} is the outward normal) and the sum of all surface forces is therefore zero; i.e. matter between the two surfaces has, as required by (22), no weight. If instead of f^{a} we would use the expressions (16), (17) for the body force, we find for the example considered here

$$
\begin{equation*}
k^{1}=l^{1}=W\left(-\Gamma_{44}^{1} T^{44}\right)=-W_{, 1} T^{44}, \quad k^{2}=l^{2}=k^{3}=l^{3}=0, \tag{38}
\end{equation*}
$$

and the volume integral $\int l^{a} u_{a} \mathrm{~d} V$ is not zero, i.e. is not equal to the corresponding integral over surface forces. Equation (18) for the $T^{\alpha \beta}$ of (32) and (37) predicts a vanishing density of gravitational mass which is consistent with a vanishing integral over surface forces; but (18) is eliminated from the competition by the next case.
(ii) Adding to any solution of (33) the solution

$$
\begin{equation*}
T^{22}=\text { arbitrary function of } x \tag{39}
\end{equation*}
$$

gives another solution which for any closed S has the same total surface force as the initial solution; this fact for the case $T^{12}=0$ demonstrates that $T^{22}=\theta_{(2)}$ does not enter (21). The fact that T^{22} does not affect the weight of the matter inside S is equivalent to the fact that for test particles, $x(t)$ is independent of $\dot{y}(0)$, the initial velocity in the y direction (see § 7). In this case, (18) gives a density of the gravitational mass proportional to T_{2}^{2} and this result is not consistent with the vanishing of the integral over the surface forces.
(iii) If a solution of (33) satisfies

$$
\begin{equation*}
T^{12}=T^{22}=T^{11}(x=a)=0, \quad T^{11}(x=b)=C \tag{40}
\end{equation*}
$$

for some constants a, b, C, then the substitution

$$
\begin{equation*}
T^{11} \rightarrow T^{11}+\text { constant } / W \tag{41}
\end{equation*}
$$

leaves T_{4}^{4} unchanged, and we can find some constant D such that

$$
\begin{equation*}
T^{12}=T^{22}=T^{11}(x=b)=0, \quad T^{11}(x=a)=D \tag{42}
\end{equation*}
$$

For example, for $T_{4}^{4}=\theta=$ constant, the transition (41) from (40) to (42) is given by

$$
\begin{equation*}
T^{11}=\theta[(W(a) / W(x))-1] \rightarrow T^{11}=\theta[(W(b) / W(x))-1] \tag{43}
\end{equation*}
$$

(smooth time-dependent transitions with $T^{i 4}=0$ are easy to find). We interpret two such solutions as belonging to the same body; first, (40), supported at $x=b$ and free at $x=a$, then, (42), supported at $x=a$ and free at $x=b$. We have

$$
\begin{equation*}
D \neq-C \text {, } \tag{44}
\end{equation*}
$$

and thus agree with Nordtvedt (1975) 'that the weight of a body must necessarily depend on where the supporting force is located'. For an opposing view see Grøn (1977, 1979).
(iv) To demonstrate the existence of the force orthogonal to $g_{44, b}$, produced by shear stress, let us investigate matter in a box bounded by the 'planes'

$$
\begin{equation*}
x=a \pm 0, \quad y= \pm p, \quad z=0, \quad z=1 \tag{45}
\end{equation*}
$$

Equations (33) have the solution ($\alpha(x), \beta(y), \delta(y)$ are arbitrary functions of their arguments)

$$
\begin{align*}
& W T^{22}=\beta \alpha_{, 11}, \quad W T^{21}=\delta-\alpha_{, 1} \beta_{, 2} \\
& W T^{11}=\alpha \beta_{, 22}-x \delta_{, 2}-W \int W_{, 1} T_{4}^{4} \mathrm{~d} x \tag{46}
\end{align*}
$$

We demand that on the body's boundary only vertical surface forces are acting (i.e. forces parallel to $g_{44, b}$); we therefore impose the conditions

$$
\begin{equation*}
T^{22}=0 \text { at } y= \pm p, \quad T^{12}=0 \text { at } x=a \pm o \text { and at } y= \pm p \tag{47}
\end{equation*}
$$

Newtonian mechanics would then predict that the total force transmitted across any vertical cross-section of the body is zero; $\& 4.2$ suggests this is not so in general relativity. Indeed, taking in (46)

$$
\begin{equation*}
\delta=0, \quad \beta=\left(y^{2}-p^{2}\right)^{2}, \quad \alpha_{, 1}=(x-a)^{2}-o^{2} \tag{48}
\end{equation*}
$$

as the solution of (47), we find

$$
\begin{equation*}
W T^{22}(x, 0)=2(x-a) p^{4} \tag{49}
\end{equation*}
$$

and the (horizontal) force K across the section $y=0$,

$$
\begin{equation*}
K \equiv \int_{x=a-o}^{a+o} T^{22}(x, 0) \mathrm{d} x \tag{50}
\end{equation*}
$$

is generally non-zero. For $W=x$ we obtain for instance for T^{22} of (49)

$$
\begin{equation*}
K=2 p^{4}\{2 o+a \ln [(a-o) /(a+o)]\} . \tag{51}
\end{equation*}
$$

The K of (50) agrees of course with the integral of the body force over the part of the body on one side of the section $y=0$:

$$
\begin{equation*}
K=\int_{y=-p}^{0} \int_{x=a-o}^{a+o} f^{2}(x, y) \mathrm{d} x \mathrm{~d} y . \tag{52}
\end{equation*}
$$

The formulae (16) and (17) in this case give $k^{2}=l^{2}=0$, i.e. they predict a vanishing force across vertical cross sections.

6. Another example

To illustrate some subtleties, we consider here the vacuum metric (a Kasner metric)

$$
\begin{equation*}
\mathrm{d} s^{2}=x^{4}\left(\mathrm{~d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right)-x^{-2} \mathrm{~d} t^{2} . \tag{53}
\end{equation*}
$$

The non-zero Γ 's are

$$
\begin{equation*}
\Gamma_{44}^{1}=-x^{-7}, \quad \Gamma_{11}^{1}=\Gamma_{12}^{2}=\Gamma_{13}^{3}=-2 \Gamma_{14}^{4}=-\Gamma_{22}^{1}=-\Gamma_{33}^{1}=2 / x . \tag{54}
\end{equation*}
$$

(i) We first consider solutions of (2) with only T_{1}^{1} and T_{4}^{4} non-zero, and both functions of x only. The only non-trivial equation of (2) is then

$$
\begin{equation*}
T_{1 \mid k}^{k}=0=x^{-3}\left(T_{1}^{1} x^{3}\right)_{, 1}-x^{-1} T_{4}^{4} \tag{55}
\end{equation*}
$$

and any surface given by (35) can be considered as the free surface of a body. If in addition we demand that the force on the surface $x=a$ is the same as that on $x=b$ for all a and b, then with

$$
\begin{equation*}
u_{c}= \pm n_{c}=\left(g_{11}^{1 / 2}, 0,0\right), \tag{56}
\end{equation*}
$$

we find from

$$
\begin{equation*}
T^{11} u_{1} n_{1} \mathrm{~d} S=\left(T_{1}^{1} g^{11}\right)\left(g_{11}{ }^{1 / 2}\right)\left(g_{11}{ }^{1 / 2}\right)\left(\mathrm{d} y g_{22}{ }^{1 / 2} \mathrm{~d} z g_{33}{ }^{1 / 2}\right)=\text { constant } \tag{57}
\end{equation*}
$$

and with (55), that

$$
\begin{equation*}
T_{1}^{1}=T_{4}^{4}=\text { constant } x^{-4} . \tag{58}
\end{equation*}
$$

Since the sum of all surface forces vanishes, we find as required by (21) that

$$
\begin{equation*}
T_{4}^{4}-T_{1}^{1}=0 \tag{59}
\end{equation*}
$$

(ii) The solution of (2) with only T_{2}^{2} and T_{4}^{4} non-zero and functions of x is given by

$$
\begin{equation*}
2 T_{2}^{2}(x)=T_{4}^{4}(x) \tag{60}
\end{equation*}
$$

Since $T_{1}{ }^{k} n_{k}=0$ for any surface $x=$ constant, such matter might seem to stay at rest without support and thus seems to violate conclusions reached from (21). But two planes with equations $y=c$ and $y=d$ respectively are not parallel since their true distance is $g_{22}{ }^{1 / 2}|d-c|$; also the y lines are not space-like geodesics. The equilibrium of the matter (60) resembles therefore that of an arch in Newtonian statics, except that in general relativity the arch can have infinite length.

We now calculate the net surface force produced by T_{2}^{2} on a volume element $\mathrm{d} V$ bounded by

$$
\begin{align*}
& x=X, \quad y=Y, \quad z=Z, \\
& x=X+\mathrm{d} X, \quad y=Y+\mathrm{d} Y, \quad z=Z+\mathrm{d} Z . \tag{61}
\end{align*}
$$

Taking

$$
\begin{equation*}
U_{a} \equiv u_{a}(X, Y, Z)=u_{a}(O)=\left(g_{11}^{1 / 2}(X), 0,0\right) \tag{62}
\end{equation*}
$$

we have for the face $y=Y$

$$
\begin{equation*}
u_{a}=\left(g_{11}^{1 / 2}(x), 0,0\right), \quad n_{a}=\left(0,-g_{22}^{1 / 2}(x), 0\right), \tag{63}
\end{equation*}
$$

and the surface force (4) is

$$
\begin{equation*}
T^{22} n_{2} u_{2} \mathrm{~d} S=0 \tag{64}
\end{equation*}
$$

For the face $y=Y+\mathrm{d} Y$ we use the law of parallel transport and (62) to obtain
$u_{2}(x, Y+\mathrm{d} Y, z)=U_{2}+\mathrm{d} u_{2}=0+\Gamma_{2 b}^{a} U_{a} \mathrm{~d} x^{b}=\Gamma_{22}^{1} U_{1} \mathrm{~d} Y=-2 X \mathrm{~d} Y$,
and we find with

$$
\begin{equation*}
n_{a}=\left(0,+g_{22}{ }^{1 / 2}(x), 0\right) \tag{66}
\end{equation*}
$$

and (60) that the surface force (4) is

$$
\begin{equation*}
T^{22} n_{2} u_{2} \mathrm{~d} S=\left(T_{2}^{2} g^{22}\right)\left(g_{22}{ }^{1 / 2}\right)(-2 X \mathrm{~d} Y)\left(\mathrm{d} X g_{11}{ }^{1 / 2} \mathrm{~d} Z g_{33}{ }^{1 / 2}\right)=-T_{4}^{4} X^{3} \mathrm{~d} X \mathrm{~d} Y \mathrm{~d} Z \tag{67}
\end{equation*}
$$

This is the total surface force in the direction u_{a}, since there are no forces on the remaining four faces; (67) is indeed equal to the body force, since using (21), (53) and (62) we find

$$
\begin{equation*}
f^{a} u_{a} \mathrm{~d} V=\left.\left.\frac{1}{2} g^{44} g_{44,1}\left(T_{4}^{4}-T_{1}^{1}\right)\right|^{3} g\right|^{1 / 2} u_{1} \mathrm{~d} X \mathrm{~d} Y \mathrm{~d} Z=-T_{4}^{4} X^{3} \mathrm{~d} X \mathrm{~d} Y \mathrm{~d} Z \tag{68}
\end{equation*}
$$

7. A link with special relativity

All examples in $\S \S 5$ and 6 , with the exception of (iv) in $\S 5$, illustrate case A of $\S 4$, i.e. the gravitational force in the direction of $g_{44, a}$ depends on the principal stress whose eigenvector is parallel to $g_{44, a}$, but does not depend on principal stresses whose eigenvectors are orthogonal to $g_{44, a}$.

Since gravitational force measures gravitational mass which presumably equals inertial mass, we expect in special relativity that the density of inertial mass depends on the orientation of the principal directions with respect to the direction of acceleration. Juxtaposition of the following two points makes this plausible.
I. Stresses are the macroscopic manifestation of microscopic motion. This is illustrated by three examples.
(i) In a perfect fluid at rest, the pressure p measures the kinetic energy of the molecules: $p=\frac{1}{3} \rho v^{2}$.
(ii) Synge (1972, p 209) models compressive/tensile stress as exchange of particles with positive/negative mass.
(iii) Quantum theory models forces as the exchange of (possibly virtual) particles: electromagnetic forces-photons, molecular forces-electrons, nuclear forces-pions, etc.
II. Weizel (1955) shows as follows that in special relativity the inertial mass of a moving particle is a tensor (or see Silberstein (1924)). Let $m, s, x_{\alpha}=x_{\alpha}(s), T_{\alpha}$ be the rest mass, proper time, world line and 4 -force of a particle. The equations of motion

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} s}\left(m \frac{\mathrm{~d} x_{\alpha}}{\mathrm{d} s}\right)=T_{\alpha} \tag{69}
\end{equation*}
$$

give, for $\alpha=i$, with the abbreviations

$$
\begin{array}{lll}
v_{i} \equiv \mathrm{~d} x_{i} / \mathrm{d} t, & v \equiv\left(v_{i} v_{i}\right)^{1 / 2}, & \gamma \equiv \mathrm{~d} t / \mathrm{d} s=\left(1-v^{2}\right)^{-1 / 2}, \\
w_{i} \equiv v_{i} / v, & P_{i} \equiv T_{i} / \gamma, \tag{70}
\end{array}
$$

that

$$
\begin{equation*}
P_{i}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(v_{i} \gamma m\right)=\frac{\mathrm{d}}{\mathrm{~d} t}\left(w_{i} v \gamma m\right)=w_{i} m \gamma^{3} \frac{\mathrm{~d} v}{\mathrm{~d} t}+m \gamma v \frac{\mathrm{~d} w_{i}}{\mathrm{~d} t} . \tag{71}
\end{equation*}
$$

The first term is the component of the relative 3 -force P_{i} in the direction of v_{i}, and the second term is the component perpendicular to it. Comparison with the Newtonian analogue of (71) shows that acceleration perpendicular to v_{i} is resisted by the transversal mass

$$
\begin{equation*}
m_{\mathrm{t}} \equiv m \gamma \tag{72a}
\end{equation*}
$$

and acceleration in the direction of v_{i} is resisted by the longitudinal mass

$$
\begin{equation*}
m_{1}=m \gamma^{3} . \tag{72b}
\end{equation*}
$$

Thus, in special relativity the inertial mass of a moving particle is a tensor and we have

$$
\begin{equation*}
m_{1} / m_{\mathrm{t}}=\gamma^{2}=\left(1-v^{2}\right)^{-1}=1+v^{2}-v^{4}+\ldots \tag{73}
\end{equation*}
$$

To summarise I and II; since stress is a macroscopic manifestation of microscopic motion of particles, and since motion makes inertial mass a tensor, we expect in special relativity that the density of the inertial mass of stressed matter is a tensor.

But our aim is to discover the degree of agreement between (73) and some analogue of it in general relativity. We consider static matter which is the superposition of steady streams of incoherent dust so that the microscopic motion can be taken to be known. Restricting ourselves to metrics such as (29) or (53), we can assume that the velocity in the z direction is zero. We compare (73) with the ratio of the body forces for two such static matter tensors, both having the same T_{4}^{4}, and both constructed from particles with the same speed $v\left(v^{2}=v_{a} v^{a}\right)$ but the first matter tensor corresponding to particles with velocities along x lines, and the second matter tensor with velocities along y lines (all this can be achieved for any particular x). Using

$$
\begin{equation*}
u_{a}=\left(g_{11}^{1 / 2}, 0,0\right) \tag{74}
\end{equation*}
$$

we find from (21) and from the matter tensor for incoherent dust the required ratio

$$
\begin{align*}
& \frac{\left(f^{a} u_{a}\right) 1 \mathrm{st}}{\left(f^{a} u_{a}\right) 2 \mathrm{nd}}=\frac{T_{4}^{4}-T_{1}^{1}}{T_{4}^{4}}=1-\frac{T_{1}^{1}}{T_{4}^{4}} \\
= & 1-\theta \frac{\mathrm{d} x}{\mathrm{~d} s} \frac{\mathrm{~d} x}{\mathrm{~d} s} g_{11} / \theta \frac{\mathrm{d} t}{\mathrm{~d} s} \frac{\mathrm{~d} t}{\mathrm{~d} s} g_{44} \\
= & 1-(\mathrm{d} x / \mathrm{d} t)^{2} g_{11} g^{44}=1-v^{2} g_{44} . \tag{75}
\end{align*}
$$

This ratio of forces (i.e. physical components) is equal to the ratio of the gravitational masses and we have good agreement with (73) if $v \ll 1$ and $g^{44} \approx-1$. We note that the first and last expression in (75) are manifestly invariants under transformations of the space-like coordinates.

References

Eddington A 1924 The Mathematical Theory of Relativity (Cambridge: Cambridge University Press) pp 122-5
Grøn Ø 1977 Am. J. Phys. 45 65-70
-_ 1979 Foundations of Physics 9 501-14
Misner W C and Putnam P 1959 Phys. Rev. 116 1045-6
Møller C 1962 The Theory of Relativity (Oxford: Clarendon Press) pp 344, 345
Nordtvedt K 1975 Am. J. Phys. 43 256-7
Oliver M A 1977 Gen. Rel. Grav. 8 975-85
Pirani F A E 1956 Acta Phys. Pol. 15 363, 404
Rohrlich F 1965 Classical Charged Particles (Reading, Massachusetts: Addison-Wesley) pp 36-43
Ruse H S 1935 Proc. Edin. Math. Soc. (2) 4 144-58
Silberstein L 1924 The Theory of Relativity (London: MacMillan) pp 193-7
Synge J L 1937 Proc. Edin. Math. Soc. (2) 593-102

- 1964 Relativity: The General Theory (Amsterdam: North-Holland)
- 1972 Relativity: The Special Theory (Amsterdam: North-Holland) pp 209-12

Temple G 1936 Proc. R. Soc. A 154 354-63
Tolman R C 1934 Relativity, Thermodynamics and Cosmology (Oxford: Clarendon) pp 234, 235, 248
Weizel W 1955 Lehrbuch der Theoretischen Physik vol I (Berlin, Göttingen, Heidelberg: Springer Verlag) pp 656-8
Whittaker E T 1935 Proc. R. Soc. A 149 384-95
Will C M 1976 Astrophys. J. 204 224-34

