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Abstract. The force acting on the matter inside an arbitrary closed surface S is considered 
for the case of a static space-time gap with a static matter tensor 7'"' satisfying T"';, = 0. 
Since the matter is in equilibrium, the body force is balanced by the surface force. The 
component of this force in any chosen direction is defined as the surface integral of an 
invariant and is transformed into a volume integral. Shrinking S to a point then yields the 
density of the body force. This paper is mostly concerned with applying this result to special 
situations. For instance, it is found that in the presence of shear stress the body force can 
have a non-zero component perpendicular to the gradient of g44. 

1. Introduction 

We restrict our attention in this paper to space-times gap which are static and possess a 
static matter tensor Tm', We use coordinates such that 

(1) 
where commas indicate partial derivatives, the Greek indices range from 1 to 4, the 
Latin indices range from 1 to 3, x4 = t, and the signature of gap is +2. We do not insist 
that the Einstein field equations are satsified and we therefore include the case of test 
bodies, i.e. bodies with T"' so small that its influence on the metric is negligible. 

The closely related concepts of inertial mass, active and passive gravitational mass 
(Will 1976, Rohrlich 1965) and force, together with their corresponding densities, are 
useful in both finding and interpreting a gap or a T"'. The present work is mostly 
concerned with force. In § 2 we consider a portion of a body at rest. Since the surface 
force is then in balance with the body force, the former is used to obtain an expression 
for the density of the latter (equation (10)). Section 3 gives a comparison of our results 
with some results from the liter'ature. The implications of (10) are examined in the 
remaining parts of the paper. In § 4 we first calculate the component of the body force 
in a direction which is an eigenvector of T"' (8 6 and most of 0 5 are examples of this 
and § 7 suggests that this case is consistent with special relativity). A second case shows 
that in the presence of shear stresses the body force can have a non-zero component 
orthogonal to g44,a. This result suggested part (iv) of § 5 and thus demonstrates the 
usefulness of the concept of body force in general relativity. 

gap,4 = gi4 = TaS94 = Ti4 = 0 ,  

2. From the surface force to the body force density 

Covariant differentiation in the static space V4 with metric gap is denoted by a 
semicolon; in the space V, with the equation x4 = constant and metric gik  it is denoted 
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3222 E Pechlaner 

by a vertical stroke. The determinants of the respective metric tensors are 3g and 4g. 
The 27 Christoffel symbols r:c are the same for both spaces. In V4 it is assumed that 
there is a static matter tensor which satisfies the equations of motion 

Tap;;, = 0. (2) 

Since T a p  is static, the matter is in equilibrium. Therefore the body force F a  acting on 
the matter inside a region V of V3 is balanced by the surface force acting on the surface 
S of V. The surface force acting on an element d S  of S is 

TaPnb dS, (3) 

where the 3-vector nb is the outward unit normal to S. Let us choose a direction by 
picking a unit 3-vector u a ( 0 )  defined at a point 0 in V. In order to sum the components 
of these surface forces in this chosen direction, we move ua by parallel transport along 
the unique geodesic from 0 to the general point P on S. The component of the surface 
force at P in the direction ua is then 

TabnbUa dS. (4) 

Note that a vector undergoes parallel transport along a curve if its absolute derivative 
vanishes (Synge 1964, p 12). The scalar product is invariant under parallel transport, so 
if instead of ua the vector Tabnb were moved by parallel transport from P to 0, the 
result would be the same. Integrating over S,  we define the component of the force F a  
in the direction ua (0) by 

F a u a ( 0 )  = I Tabnbua dS. 
S 

( 5 )  

Gauss’s theorem then yields 

where d V  = (3g)1’2 dx‘ dx2 dx3. The term q b  is exactly zero if the Riemann tensor of 
V3 is zero, as in 9 5 .  This term goes to zero as V shrinks to a point, as can be seen from 
Synge (1964, equation (71), p 59 and the 2nd or 3rd of equation ( l l l ) ,  p 67). The 
component of the body force f a  in the arbitrary direction uu is thus defined by 

1 
v-0 v f a ~ a  = lim - Fau, (0) = T a b p a ,  (7) 

where V is the volume of the region V. 
We have therefore, because of the arbitrariness of ua, that 

f a  = Tablb. (8) 

Since r& = Ta4  = 0,  we have 

Tablb = Tap;,-  Ta4;4= -Ta4;4 = -r:4T44-ribTab, (9) 



Force in static general relativity 3223 

Some justification for using parallel transport in (4) is given by the following 
theorem. If in a static space-time with gap,4 = ga4 = 0 ,  a matter tensor T a p  satisfying (2) 
has only T1' non-zero, then the x1 lines are geodesics in V4 and V3. In 9 5, where the 
background metric has a flat V3, parallel transport needs no justification since there its 
use coincides with standard procedures. Oliver (1977), in defining a matter tensor for 
extended bodies, uses parallel transport of tensors along geodesics. Use of parallel 
transport of a vector as in (6) resembles that of Temple (1936). 

3. Comparison with the literature 

Whittaker (1935) and Ruse (1935) take the gravitational force to be proportional to the 
acceleration: 

S dx" d2xa dxP dxY 
Ss ds ds ds ds ' ha=----.= T+r;Y-  - 

where s is the proper time. They take dx'/ds = 0, thus assuming (see § 7) that matter at 
rest is composed of particles at rest, and find that 

(12) 

(13) 

h a  = 1  44 h4 = 0, Zg g44,bgab- 
Eddington (1924) writes (2) in the form 

P 4 1/2 4 1/2 ps k a = ( T a )  g /  ),p=igps,aI gI T 
and takes this 'as the (negative) body-force acting on unit-volume'. 

Synge (1964, p 249) discusses, without endorsement, 

I (Tap14g/1 /2) ,P  dx' dx2 dx3 

as the total force acting on a body, which with (2) leads to the body force density 

la ( T ~ " ~ ~ / ~ / ~ ) , , ,  = -.r;S14g11/2~@S. (1 4) 

To compare the expressions (lo), (13), (14) for the case of a static metric and static 
matter we assume (1) and k" = g a P k p  and we find for the body force densities 

p = k4  l4  = 0, 

(15) 

(16) 

(17) 

3 1/2 a 3 1/2 I gl f = I  gl (-r4a4~44-r:b~ab), 
k" = 1 4 gl 1/2 (-r4a4T44+~gbc,dgadrbc), 

I" = j gj 4 1/2  

Using a divergence as body force density in (13) and (14) enables one to use Green's 
theorem to establish many parallels between general relativity and Newtonian 
mechanics, but at the cost of losing tensorial invariance. Thus Synge, while pointing out 
these parallels, does not claim physical significance for them. 

The approach of § 2 evolved from doing simple examples as in 80 5 and 6 where it 
was obvious what the surface force and body force ought to be. It is therefore not 
surprising that fa, but not k" or I", leads in § 5 to the expected answers. From the tensor 
character of T"' and ( 8 )  it follows that f a  is a vector under transformation of the 
space-like variables. 



3224 E Pechlaner 

For later comparison we conclude this section by quoting some results on gravita- 
tional mass since, in the static case, gravitational mass is measured indirectly by 
measuring gravitational force (= body force). Making no distinction between active 
and passive gravitational mass, Synge (1937), Pirani (1956) and Moller (1962) conclude 
that the density of gravitational mass is dependent on T"O via 

-T:+ T," = -2T:+ T;. 

Indeed, in Einstein's linearised theory expression (18) is proportional to the D'Alem- 
bertian of g44 and thus plays the role of active gravitational mass. Tolmann (1934), 
Moller (1962), Whittaker (1935), Ruse (1935) and many others find that the total 
gravitational mass of an isolated body is 

Some proofs use pseudo-tensors, and all of them use Einstein's equations; Whittaker 
(1935) and Synge (1937) start from the density of some gravitational force. For a 
spherically symmetric body, (19) is indeed equal to the constant m appearing in the 
exterior Schwarzschild metric. In (19), the contribution of the stresses, i.e. TZ, is usually 
small even when T ,  is of the same order as T: (as is the case.for electromagnetic fields 
for which T i  = 0), because (Misner and Putnam 1959), for a bounded isolated body in 
almost flat space, the integral over T," is almost exactly zero. For example, elec- 
tromagnetic radiation in a box produces tension in the walls of the box which almost 
cancels the contributions of the Maxwell stresses to (19). 

4. Two cases 

To gain insight into (10) we study two special cases. 

4.1. Case A 

Denote the eigenvalues and eigenvectors of Tab by and A fc )  respectively. If u b ,  the 
direction in which we find the component of the force f a ,  coincides with one eigen- 
vector, say A ;l), then mith 

(20) 
b Tabua = B(1)u , 

we find from (loa) 

(21) 1 b  
f a U a  g44,bg44(~:--(1))* 

If furthermore ub is a positive multiple of g44,b, then 

as demonstrated by examples in the next two sections. Gravitational force measures 
passive gravitational mass which, for the special situation considered here, is equal to 

- T t  + e,,). (23) 
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We recall that Synge (1937), Pirani (1956) and Moller (1962) obtained (18) 

-T: + e(1, + e(2) + e(3) (24) 
for the density of the (active) gravitational mass. 

4.2. Case B 

We now investigate the component of f a  perpendicular to g44,a and thus assume 

(25) ab 
Uag44,a E g g44,bUa = 0. 

Then only the second term in ( l o a )  remains and we have 

f a U a  = -ig44g44,bT:~a. 

This can be non-zero, i.e. the component of the force f a  orthogonal to g44,a need not 
vanish. If we choose the coordinates xa such that g44,a is tangent to the x1 lines, then 

1 
U 

f a U a  = -ig44g44,1(T:~2+ T:u3). 

= g44.2 = g44,3 = 0 
and thus 

Part (iv) of 0 5 gives an example of this force orthogonal to g44,a. 

5. Simplest example 

We apply here the results of §§ 2,3 ,4  to the simplest non-trivial gmP. Suppose the metric 
is given by (xl x 2  x3 x4 = x y t t )  

d s 2 = d x 2 + d y 2 + d z 2 -  W2(x)  d t 2 ,  (29) 

which is vacuum if -g44 = W 2  = x z .  The 3-space is flat, and thus, for the vector ua 
undergoing parallel transport, we have 

Ualb = 0 everywhere. (30) 

= wdw, r:, = w w ,  (31) 

The non-zero r’s are 

and material particles, initially at rest, fall along x lines. We assume for simplicity that 
the non-zero Tap’s are at most 

T”, T1’, TZ2,  T44, (32) 

(WT”),1+ ( WT1’),2 + W,,Tt = 0,  (33a) 

(336) 

(34) 

and are functions of x and y only. The non-trivial equations (2) then become 

( WTZ1),l + ( W T Z 2 ) , 2  = 0. 

T~~ = T~~ = 0 

If in addition 

is assumed, then any cylinder with equation 

H(Y, 2) = 0 (35) 
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can be considered as a free surface of a body, because for this surface 

Tabnb = 0. (36) 

T~~ = T~~ = T: -  T: = 0, (37a) 

7': = T: = arbitrary function of y .  

(i) If we assume 

then from (33a) we obtain 

(37b) 

The force 1' T"nlul d S  on the part of the surface x = a inside the cylinder H ( y ,  z )  = 0 is 
therefore the same as that for the surface x = b (if U, = n, = (LO, 0)). In calculating the 
sum of all surface forces acting on the body between these two planes, we have the two 
n, anti-parallel (n ,  is the outward normal) and the sum of all surface forces is therefore 
zero; i.e. matter between the two surfaces has, as required by (22), no weight. If instead 
of fa we would use the expressions (16), (17) for the body force, we find for the example 
considered here 

(38) 

and the volume integral lau,  d V is not zero, i.e. is not equal to the corresponding 
integral over surface forces. Equation (18) for the Ta6 of (32) and (37) predicts a 
vanishing density of gravitational mass which is consistent with a vanishing integral over 
surface forces; but (18) is eliminated from the competition by the next case. 

k' = 1' = W(-l?:4T44) = - W,1T44, k 2  = i 2  = k 3  = 1 3 =  0 

(ii) Adding to any solution of (33) the solution 

T22 = arbitrary function of x (39) 
gives another solution which for any closed S has the same total surface force as the 
initial solution; this fact for the case TI2 = 0 demonstrates that TZ2 = does not enter 
(21). The fact that T22 does not affect the weight of the matter inside S is equivalent to 
the fact that for test particles, x ( t )  is independent of i(O), the initial velocity in the y 
direction(see 0 7). In this case, (18) gives a density of the gravitational mass propor- 
tional to T: and this result is not consistent with the vanishing of the integral over the 
surface forces. 

(iii) If a solution of (33) satisfies 

TI2 = T22 = TI'(' = a )  = 0, 

TI'+ T'l +constant/ W (41) 

T12 = T22 = T"(x = b )  = 0, 

TI1 = e[( W ( U ) /  W ( X ) )  - 1]+ T1' = e [ (  W(b) /  W ( X ) )  - 11 

T"(x = b )  = C, (40) 
for some constants a ,  b, C, then the substitution 

leaves T: unchanged, and we can find some constant D such that 

T"(x = a )  = D. (42) 

For example, for T: = O = constant, the transition (41) from (40) to (42) is given by 

(43) 

(smooth time-dependent transitions with TI4 = 0 are easy to find). We interpret two 
such solutions as belonging to the same body; first, (40), supported at x = b and free at 
x = a, then, (42), supported at x = a and free at x = b. We have 

D # -C, (44) 
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and thus agree with Nordtvedt (1975) ‘that the weight of a body must necessarily 
depend on where the supporting force is located’. For an opposing view see G r m  
(1977, 1979). 

(iv) To demonstrate the existence of the force orthogonal to g44,b, produced by 
shear stress, let us investigate matter in a box bounded by the ‘planes’ 

x = a * o ,  Y = *P, z =o ,  z = l .  (45) 

Equations (33) have the solution ( a ( x ) ,  p(  y), S( y )  are arbitrary functions of their 
arguments) 

WTZ2 =Pa,11, WTZ1 = 6 - ( ~ , 4 , 2 ,  

WT’’ = ap,z2 - X S , ~  - W I  W,, T i  dx. (46) 

We demand that on the body’s boundary only vertical surface forces are acting (i.e. 
forces parallel to g44,b); we therefore impose the conditions 

(47) 
Newtonian mechanics would then predict that the total force transmitted across any 

vertical cross-section of the body is zero; D 4.2 suggests this is not so in general relativity. 
Indeed, taking in (46) 

(48) 

TI2 = 0 at x = a  k o  and at y = * p .  22 T = O  at y = h p ,  

2 2  s =o,  P = ( Y 2 - P 2 ) 2 ’  a,1=(x--a) -0 , 

WTZ2(x, 0) = 2(x - a)p4, 

as the solution of (47), we find 

(49) 
and the (horizontal) force K across the section y = 0, 

a +a 

K = TZ2(x,  0 )  dx, 
x=a--0 

is generally non-zero. For W = x we obtain for instance for TZ2  of (49) 

K = 2p4(2o + a In[(a - o ) / ( a  + o)]}. ( 5  1) 
The K of (50) agrees of course with the integral of the body force over the part of the 
body on one side of the section y = 0: 

a CO 

K = Io I f 2 ( x ,  y )  dx dy. 
y = - p  x = a - o  

The formulae (16) and (17) in this case give k 2  = l 2  = 0, i.e. they predict a vanishing 
force across vertical cross sections. 

6. Another example 

To illustrate some subtleties, we consider here the vacuum metric (a Kasner metric) 

ds2 = x4(dx2 +dy2+dz2)  - x - ~  dt2. 

r:, = - x - 7 ,  

(53) 

(54) 

The non-zero r’s are 
2 3  4 1 r:, = r12 = r13 = -2r14 = -ri2 = -r33 = 2/.~. 
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(i) We first consider solutions of (2) with only T i  and T: non-zero, and both 
functions of x only. The only non-trivial equation of (2) is then 

( 5 5 )  

and any surface given by (35) can be considered as the free surface of a body. If in 
addition we demand that the force on the surface x = a is the same as that on x = b for 
all a and 6, then with 

(56) 

TlIk k = O = X - ~ ( T : X ~ ) , ~ - - X  - 1  T4, 4 

1/2 
U ,  = f n ,  = ( g l l  , O , O ) ,  

we find from 

(57) T1'u1nl dS  = (T;g1')(  g111'2)( gll 1/2 )(dy g 2 2 l l 2  dz g331/2)  = constant, 

and with ( 5 3 ,  that 

T i  = T: = constant x - ~ ,  

Since the sum of all surface forces vanishes, we find as required by (21) that 

T: - 7': = 0. (59) 

2 7 3 . 4  = T:(x). (60) 

(ii) The solution of (2) with only T i  and T: non-zero and functions of x is given by 

Since Tlknk = 0 for any surface x = constant, such matter might seem to stay at rest 
without support and thus seems to violate conclusions reached from (21). But two 
planes with equations y = c and y = d respectively are not parallel since their true 
distance is g221'21d - c 1 ;  also the y lines are not space-like geodesics. The equilibrium of 
the matter (60) resembles therefore that of an arch in Newtonian statics, except that in 
general relativity the arch can have infinite length. 

We now calculate the net surface force produced by T i  on a volume element d V  
bounded by 

x = x ,  Y = y, z =z, 
x = X + d X ,  y =  Y+dY,  z = Z + d Z .  

Taking 
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and (60) that the surface force (4) is 
TZ2n2u2 d S  = (Tzg22)(g221/2)(-2X dY)(dXgll  1/2  dZg33’/2) = -T44X3 d X  d Y  dZ. 

(67) 
This is the total surface force in the direction ua, since there are no forces on the 
remaining four faces; (67) is indeed equal to the body force, since using (21), (53) and 
(62) we find 

fnua dV=~g44g44,1(T:-TT:)13g11’2~1dXdY d Z = - T : X 3 d X d Y d Z .  (68) 

7. A link with special relativity 

All examples in § §  5 and 6, with the exception of (iv) in § 5 ,  illustrate case A of § 4, i.e. 
the gravitational force in the direction of g44.a depends on the principal stress whose 
eigenvector is parallel to g44,a, but does not depend on principal stresses whose 
eigenvectors are orthogonal to g4dSa. 

Since gravitational force measures gravitational mass which presumably equals 
inertial mass, we expect in special relativity that the density of inertial mass depends on 
the orientation of the principal directions with respect to the direction of acceleration. 
Juxtaposition of the following two points makes this plausible. 

I. Stresses are the macroscopic manifestation of microscopic motion. This is 
illustrated by three examples. 

(i) In a perfect fluid at rest, the pressure p measures the kinetic energy of the 
molecules: p = ~ p v  . 

(ii) Synge (1972, p 209) models compressive/tensile stress as exchange of particles 
with positive/negative mass. 

(iii) Quantum theory models forces as the exchange of (possibly virtual) particles: 
electromagnetic forces-photons, molecular forces-electrons, nuclear forces-pions, etc. 

11. Weizel (1955) shows as follows that in special relativity the inertial mass of a 
moving particle is a tensor (or see Silberstein (1924)). Let m, s, x, = x,(s), T, be the 
rest mass, proper time, world line and 4-force of a particle. The equations of motion 

1 - 2  

- m -  =T, d”,( 3 
give, for a = i, with the abbreviations 

that 

d d d wi 
P. = - ( v ,  ) = - (wivym) = wimy3 *+ myv -, ’ dt lym d t  dt dt  

The first term is the component of the relative 3-force Pi in the direction of vi, and the 
second term is the component perpendicular to it. Comparison with the Newtonian 
analogue of (71) shows that acceleration perpendicular to vi is resisted by the trans- 
versal mass 
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and acceleration in the direction of v i  is resisted by the longitudinal mass 

(72b) 

m l ~ m , = Y 2 = ( i - t , 2 ) - 1 = 1 + U 2 - U 4 + .  . .  . (73) 

3 m l = m y .  

Thus, in special relativity the inertial mass of a moving particle is a tensor and we have 

To summarise I and 11: since stress is a macroscopic manifestation of microscopic 
motion of particles, and since motion makes inertial mass a tensor, we expect in special 
relativity that the density of the inertial mass of stressed matter is a tensor. 

But our aim is to discover the degree of agreement between (73) and some analogue 
of it in general relativity. We consider static matter which is the superposition of steady 
streams of incoherent dust so that the microscopic motion can be taken to be known. 
Restricting ourselves to metrics such as (29) or (53), we can assume that the velocity in 
the z direction is zero. We compare (73) with the ratio of the body forces for two such 
static matter tensors, both having the same T:, and both constructed from particles with 
the same speed U (U' =: vat,') but the first matter tensor corresponding to particles with 
velocities along x lines, and the second matter tensor with velocities along y lines (all 
this can be achieved for any particular x). Using 

(74) 112 ua = (gl l  7 0901, 
we find from (21) and from the matter tensor for incoherent dust the required ratio 

dx dx 
ds ds 

=1-8---gll 

= 1 - ( d ~ / d t ) ' g l ~ g ~ ~ =  1 - ~ ' g 4 4 .  (75) 
This ratio of forces (i.e. physical components) is equal to the ratio of the gravitational 
masses and we have good agreement with (73) if U << 1 and g44 = -1. We note that the 
first and last expression in (75) are manifestly invariants under transformations of the 
space-like coordinates. 
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